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Abstract
It is shown, through an elementary quantum mechanical calculation, that two
particles interacting via a short range repulsive force in an external periodic
potential can form a bound state. The two-particle wavefunction is labelled by
a continuous centre-of-mass momentum. It is bounded and spatially localized
in the centre-of-mass system; thus, the spatial wavefunction in the relative
distance is square integrable and corresponds to a discrete energy. For instance,
a combination of short-range (i.e. screened) binary Coulomb interactions and
the periodic potential provided by the stationary ions, can create a two-electron
bound state in a crystalline solid (Slater et al 1953 Phys. Rev. 91 1323 and
Hubbard 1963 Proc. R. Soc. A 276 238). However, the phenomenon delineated
here is universal in the sense that, under appropriate conditions, bound states
are possible independent of the nature of the particles and/or the mechanism
by which the external periodic potential is engineered. Our general wave
mechanical result may explain experimental results presenting evidence of
such bound pair states in solids (Gross et al 1971 JETP Lett. 13) and photonic
lattices (Winkler et al 2006 Nature 441 853). It has many other potentially
interesting consequences even for classical interacting wave systems (e.g.
solitons) propagating in a periodic background. This result of wave mechanics
and interference is remarkable in that two repulsively interacting particles
cannot form a bound state when moving in vacuum. Two non-interacting
particles moving in a periodic external potential can only ever form uncorrelated
two-particle Bloch states and yet when both physical conditions are present they
can move as a ‘bound pair’.

PACS numbers: 03.65.−w, 03.75.−b, 03.75.Lm

1. Introduction

The energy spectrum of free quantum particles (obeying the Schrödinger equation) in a
periodic potential is disconnected, and consists of allowed and forbidden bands; the band
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gaps arise due to Bragg reflections. The existence of the bound states for repelling particles
can be qualitatively explained by the fact that the Bloch spectrum of a particle moving in a
periodic potential implies negative effective masses for certain wave numbers (close to zone
boundaries) and such particles subject to repulsive forces can form bound states. A deeper
explanation may lie in the fact that Bragg reflection actually constrains two electrons to be
close even though they repel each other, provided they both have energies close to a zone
boundary.

This result, a characteristic of the wave nature of matter, does not apply to classical
particles. Classical waves, on the other hand, do indeed duplicate this remarkable behaviour
of quantum particles; well-defined bound states (called ‘Gap modes’) of the Alfvén waves
emerge in an effective repulsive potential embedded in a periodic potential created by the
toroidal magnetic field geometry in tokamak plasmas [5]. Nonlinearly interacting wave
motions in a periodic external background (due to magnetic geometries or rotation) are also
of great interest in plasmas (drift waves) and fluids (Rossby waves). [6].

In this paper, we provide a simple (and interestingly, in principle, exact) quantum
mechanical calculation demonstrating that two particles (electrons, atoms, etc.), interacting
through a short-range binary repulsion, can indeed form a bound state in a given periodic
potential (this work is based on an earlier unpublished report of the authors [7]). The calculation
is readily seen to apply to any pair of repelling particles—not necessarily identical—in any
external periodic potential such as those created, for example, by suitable laser fields in cold-
ion traps [2]. In principle, the effect can also be expected to apply, under suitable conditions,
to solitons moving in a periodic external potential provided their mutual interaction can be
represented by a short-range repulsion.

Since the repulsive potential in most cases of interest will be short range (i.e., ‘Debye-
screened’) Coulomb, we will call the bound state derived in this paper a ‘Coulomb pair’.
We will show, that unlike phonon-mediated Cooper pairing in wave-number space, the
wavefunction of the ‘Coulomb pair’ (in the centre-of-mass frame) tends to be strongly localized
in position space.

Consider two particles a, b interacting with each other via a repulsive potential
Vr(|xa − xb|) in the presence of an external periodic potential Vp(x + d) = Vp(x). The
time-independent Schrödinger equation, describing their motion is,

− h̄2

2m

∂2�

∂x2
a

− h̄2

2m

∂2�

∂x2
b

+ [Vp(xa) + Vp(xb) + Vr(|xa − xb|)]� = E�(xa, xb). (1)

In the absence of either Vp or Vr , this equation may be solved to yield non-square integrable
solutions corresponding respectively to ‘Bloch states’ (Vr = 0) or ‘scattering states’ (Vp = 0).
Thus, when the particles are non-interacting (i.e., Vr = 0) but moving in the periodic ‘lattice
potential’, the two particle states will have—by virtue of the Bloch/Floquet theorem—a
characteristic Bloch structure in the centre-of-mass coordinate X = (xa + xb)/2 and a crystal
momentum wave-number K. In the relative coordinate |xa − xb|, it will essentially be a
scattering state (and therefore not square integrable and having a continuum eigenvalue
structure) which will be finite at infinity. When the interaction potential is repulsive, this
continuum eigenfunction structure will persist even if the external periodic potential is removed
and the particles move in a vacuum. In the case when the repulsive interaction and the periodic
potential are simultaneously present, we demonstrate the existence of eigen solutions of the
two-body Schrodinger equation with square-integrable bound states in the relative coordinate
(which therefore tend to zero as |xa − xb| → ∞ unlike scattering states) and discrete eigen
values, whilst the Bloch structure persists in the centre-of mass-coordinate, as required by the
periodicity of the full two-body Hamiltonian.
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2. Analysis of the two-body problem in periodic potentials

For a short-ranged (e.g., screened Coulomb) repulsive potential Vr , we find that equation (1)
admits solutions that are Bloch-like � eiKxW(x, y) in the centre-of-mass coordinate x =
(xa + xb)/2 [W(x, y) is periodic in x with the lattice period d], and localized in the relative
coordinate y = xa − xb. These eigensolutions are nondegenerate and are labelled by K,
the centre-of-mass ‘wavenumber’. Thus the wavefunction �(xa, xb,K) has a characteristic
energy E(K). The proof applies mutatis mutandis to any reasonable periodic potential and to
any purely repulsive potential which is sufficiently short-ranged.

In the following, ε(k, n) is the eigen energy. For transparency of notation we use the
reduced zone scheme in which k is the reduced zone wavenumber −π/d � k � π/d, and n
is the band index. In the rest of this paper we will use ξ as a composite symbol for k and n
with

∫
ξ

≡ ∑∞
n=1

∫ π/d

−π/d
(dk/2π) denoting integration over the allowed bands. The total (spin

plus orbital) wavefunction must be antisymmetric. Since the potentials (by assumption) are
independent of spin, we may look for spin zero (singlets) or spin one (triplet) solutions. For
simplicity, we discuss the singlet case, corresponding to spatially symmetric wavefunctions.
Unless otherwise stated, in the following the label � refers to the symmetric spatial orbital.
This orbital wavefunction is expanded in terms of symmetrized products of one-electron Bloch
states, eikxUk(x) and satisfies, when substituted in equation (1), an integral equation for the
amplitude �̂.

The solution is of the form ˆ�(ξa, ξb) = δ(K − ka − kb)F (ka,K − ka, na, nb) with F
satisfying

[E − ε(ξa) − ε(ξb)] F(ka, na, nb) = (2πd)−1
∑
n′

an
′
b

∫
P̂ F (k′

a, n
′
a, n

′
b) dk′

a. (2)

These spatially symmetric solutions are even in y ≡ xa − xb. The kernel P̂ of the equation
is obtained by transforming to the centre-of-mass x and the relative coordinate y [xa = x +
y/2, xb = x − y/2, dxa dxb ≡ dx dy], exploiting the periodicity of the Bloch functions, and
using the standard identity

∑n=+∞
n=−∞ exp[inθ ] = 2πδ(θ) for −π � θ � π :

P = (2π/d)δ(k′
a + k′

b − ka − kb)

∫
dyVr(|y|) exp[−iy(k′

a − ka)]

×
∫ d/2

−d/2
dx�(x + y/2)�(x − y/2), (3)

where �a(b) ≡ [U ′
k(x)U ∗

k (x)]a(b) are periodic in xa(b), and the double integral constitutes P̂ .
We simplify equation (3) (essentially equivalent to equation (1)) to elucidate the basic

physics of Coulomb pair-formation by putting Bloch functions equal to unity, by modelling
the repulsive potential by Vr = V0dδ(y) leading to P̂ = V0d

2, and by restricting the k
integration only to the two relevant bands n = 1, 2. Defining new dimensionless variables
k = kd/2π,K = Kd/2π(−1/2 � k,K < 1/2), u = k − K/2, and remembering the
constraints on k′

a integration, equation (3) leads to the integral equation/dispersion relation,

1

2V0
=

∑
i,j

∫ (1−K)/2

0

du

E − εi(u − K/2) − εj (u + K/2)
. (4)

This equation is clearly a generalization of Hubbard’s [2]. Given the single-particle
energy spectrum (i.e. ε(k)) and the interaction potential V0, this equation is readily solved
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Figure 1. (a) Pair energy E(K) and the Bloch energy bands for the Kronig–Penney potential,
(b) Pair coherence function ρ(y), see text for details.

numerically to give the energy E(K) and the two-particle wavefunction in terms of the relative
coordinate y. It admits, of course, various ‘scattering states’ which are not square integrable
in y. We shall be more interested in the bound states. Even without solving equation (4), it is
evident from the nature of the energy denominators that when E lies in the two-particle gaps
caused by non overlapping Bloch band energies, the equation has nontrivial solutions which
correspond to the two-particle bound states. It can be seen from elementary arguments that
the pair wavefunction in this case is localized in y (i.e.,

∫ +∞
−∞ |�(x, y)|2 dy < |C|2).

We present as an explicit example, numerical solutions based on the one-particle dispersion
relation cos 2πε1/2 + (sin 2πε1/2/2πε1/2)Q0 = cos 2πk corresponding to the well-known
Kronig–Penney potential Vp(x) = Q0(h̄

2/md)
∑n=∞

n=−∞ δ(x −nd),Q0 = (md/h̄2)Qb, where
Q(b) is the strength (range) of the potential. Here we show a typical strong potential (Q0 = 5)

example for which the gap size is comparable to the band width. In figure 1(a), we plot the
functions ε1(k) (single-particle ‘valence’ band), ε2(k) (single-particle ‘conduction’ band) and
E(K) for V0 = 0.5 (a typical value when the screened Coulomb potential is approximated
by a delta function). The precise location of the energy eigenvalue E(K) will depend on
the strength of the repulsive potential V0. The plot of E(K) as a function of K shows : (1)
that the minimum pair energy occurs at K = 1/2, and (2) that the pair energy for the chosen
parameters has a slow K variation (high effective mass). In figure 1(b) we display a plot of the
relative probability density |�(x, y)|2/|�(x, 0)|2 = ρ(y) as a function of y (measured in d )
for the most tightly bound K = 1/2 state. The probability density falls off rapidly implying
a short coherence length ξ � d, the lattice period. The pair size remains between 1 − 10d

for all reasonable values of Q0 and V0. Thus, the present pairing mechanism can operate
essentially independently of any other (for example, the lattice-phonon mediated, long-range
Cooper pairing for electrons in a crystalline lattice).
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3. Discussion and conclusions

The main results of the preceding calculation can now be summarized: (1) in a periodic
external potential, two electrons (or indeed any pair of like-charged particles, identical or
otherwise) interacting through a short-ranged repulsive potential can be ‘bound’ to form a spin
zero compound boson with a spatial extent of the order of a lattice length. For electrons in a
solid lattice it will have a charge of −2e . This result is remarkable since neither of the two
potentials can, by itself, yield states localized in the relative coordinate(but Bloch-like in the
centre-of-mass coordinate). (2) An essential requirement for solutions of this type to exist is
the disconnected nature of the single-particle energy spectrum (i.e, the existence of distinct
band gaps ). (3) Typically, the two-particle energy E(K) is a continuous function of the lattice
momentum K of the pair, and forms a band with higher energies than would be the case if
both constituents had energies in the valence (i.e. lower) band. Thus these pair states possess
higher energies and are ‘excited’ relative to the ground state of the two-particle system. This
is perfectly understandable since the repulsive interaction can only ever increase the energy
of a pair relative to the unperturbed system.

We believe that our calculation, firmly based as it is on wave mechanics, can provide a
theoretical framework for a detailed understanding of the recent experiments of [2]. It shows
that the correlation of repulsively interacting particles in periodic potentials is a characteristic
of interacting waves, having little to do with spins, complicated many-body effects, second-
quantization (thus the particles need not both be bosons or fermions) etc. Perhaps the simplest
physical manifestation of the phenomenon under discussion is provided by the delocalized
motions of paired electrons in a benzene ring structure.The predicted energy of the bound
state, as well as its spatial shape and extent, could be readily compared with the experiment.
It would also be of interest to consider the case of two interacting solitons in a periodic
potential. This problem could be attacked numerically (and indeed experimentally) and would
have interesting consequences for nonlinear optics and wave motion generally. The proof-
of-principle calculation presented here suggests, and this remains to be verified by detailed
numerical simulations and possibly also by experiments, that under suitable conditions, bound
pairs of solitons can exist in stable (or meta stable) states and propagate together in the
environment of an external periodic potential.
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